
Generator-Constant-Axiom-Class (GCAC) CSS Methodology 1

Generator-Constant-Axiom-Class
(GCAC) CSS Methodology
By Joseph Juma

My approach to CSS has recently become more structured, after an associate told me
about utility classes as a CSS approach. For those unfamiliar, a utility class is a new
name for an old approach. You create CSS rules named things like .dark-background or
.title-text and then compose your style by adding these various classes inline to the
HTML element you want to style. So a specific element like look like <div class="dark-
background title-text 16px-border text-underlined">...</div> to style it with those various
traits. This can be a very beneficial approach for two reasons.

1. It allows you to not need to repeatedly style CSS, so you can include all the styling
you need for a specific look in one class. This makes your CSS much more
modular, easier to use without complex rule interactions, and simpler to style given
elements. Taking this approach can even heavily reduce the sheer size of the CSS
you have to write.

2. It puts your CSS styling in the class list with a modular structure, which is accessible
via JavaScript. By exposing such fine-grained control to JS, you open up a lot of
possibilities for intelligent styling based on logical operations.

I had last seen this approach before the common adoption of css preprocessor, and so
it hadn’t crossed my mind until my friend had shown me his usage of it. At the same
time, I had been brushing up on my Swiss Style design knowledge, and writing my own
CSS library for a complex application I was creating. This was enough reason to sit
down and seriously consider my approach, from which I developed a structure I believe
is sensible and powerful, if a little heavy for creating strong CSS.

Structure
My CSS approach has 4 parts.

Generators are CSS functions created using a CSS preprocessor to take in a variable
and create a class based on the input value. A good example Generator is one which
takes in a font-size and creates a properly set typography styling. Being a student of

Generator-Constant-Axiom-Class (GCAC) CSS Methodology 2

Swiss Designer and an advocate for the golden ratio, I created a series of text
generators in LESS code as follows.

.golden-font-size(@size)
{
 /*
 Creates a font where the text takes up 61.81% of the line-height, and
 38.19% is taken up by white space forming a golden ratio visually.
 */
 font-size:@size;
 line-height:1.61819; // unitless makes this into a coefficient multiplied by font-size.
}

.title-font-size(@base)
{
 /*
 Creates a size of font that can fit 1 line of title in the same space
 (not counting the padding) as 2 lines of subtitle, and 3 lines of
 normal font.
 */
 .golden-text(2.61819*1.61819*@base);
}

.subtitle-font-size(@base)
{
 /*
 Creates a size of font that can fit 2 lines of subtitle in the same
 space (not counting the second-line's whitespace) as 3 lines of
 standard body font.
 */
 .golden-text(1.61819*@base);
}

.standard-font-size(@base)
{
 .golden-text(@base);
}

as you can see, this allows me to do complex mathematical equations with
precomputed coefficients to create designs based on an input value. Generators should
be relatively clean of referring to any variables that aren’t strictly part of the underlying
generator’s behavior. This means if a variable, even if it is a global constant, must be
referred to, then it should be passed in as a parameter rather than just included. The
reason for this will become clear later.

Constants are constant values that are used to configure the overall look of the
application. These can be things like predefined colors, font-sizes, type families or

Generator-Constant-Axiom-Class (GCAC) CSS Methodology 3

sizing values. You create constants in a constants file and then refer to them in other
code files.

Axioms are my name for utility classes . These are simple CSS rules that tackle one
specific piece of styling. You should use both constants and generators, often together,
to create the rules for axioms. By being diligent with your generators, you can make
sure that even if you need to change constants, your axioms will still functional well
overall. Axioms should be relatively atomic and simple. The reason to call these axioms
rather than utility classes, is because the word utility has too many other possible
uses, while the word axiom does accurately describe these CSS rules.

Classes are just standard CSS classes, but they are constructed by combining together
various axioms. This allows you to refer to a single css class in your HTML rather than
stringing together a messy and long set of axioms or utility class names. This may seem
strange given my previous lauding of the granular control over class-style exposed to
JavaScript by inline classes, but many utility classes often create messy lists of overly
long classes. For most behaviors it is better to write distinct classes which represent the
distinct states of a type of element, and use JavaScript to toggle between these rather
than performing array operations on the classList object. However this is not a hard rule
and there are times when appending a class to the classList to achieve a one-off styling
is more effective than creating an entirely separate class just for that permutation. For
example, if you have an axiom for highlighting the text in paragraphs, tables and divs on
mouse-over, and are styling a div with a specific class, say .fancy-div you should not
need to make an additional .fancy-highlighted-div class just to apply highlighting, but
instead can just apply the .highlight class to the div component. Conversely, say you
had 10 divs that had a number of axioms for the background, text and bordering. If you
wanted a button press to change 5 of these divs to have different background, text and
border styling, that would be 3 styles that all happen in conjunction. In this case, if those
styles will always vary together, then that should be it’s own specific class.

Conclusion
With this technique you can create cleaner modular CSS that has complex behaviors
and can be reconfigured by primarily changing the axioms and the classes. Although
somewhat heavy in comparison to the utility classes approach it can allow for cleaner,
more sophisticated CSS stylings.

